93333390

DSC 40B
Lecture 21 :
Shortest Path
T T T T T Tt T T T

Shortest Paths

T ———
..............................

Example

'l'f‘l'f"f'!"!."!'

T — T W ————
Lttt

=l

ecall

e The length of a pathis ?

R .

3333333

=l

e The length of a pathis (# of nodes) - 1

ecall

R .

3333333

Definitions

e A shortest path between u and v is a path between u and v
with smallest possible length.
o There may be several, or none at all.

e The shortest path distance is the length of a shortest path.
o Convention: < if no path exists.
o “the distance between u and v* means spd.

133193149

T ————
.............................

ceeecece

Today: Shortest Paths

e Given: directed/undirected graph G, source u

e Goal: find shortest path from u to every other node.

T ————
.............................

T R ————
-ttt

T R ————
-ttt

T R ————
-ttt

Dist: O

T R ————
-ttt

Dist: O

T R ————
-ttt

.I,_) Example -

NG

Dist: O Dist: 1

T ————
e

I N) D D -------q

.I,_,p Example

Dist: O Dist: 1

T ————
e

I N) D D -------q

.I,_,p Example

Dist: O Dist: 1 Dist: 2

T ————
e

ll lllllllllllllllllllllll=l=
.-

.I,_,p Example

Dist: ?

T ————
e

I lllllllllllllllllllllll=ll

.I,_) Example

==-—' mnd I

I lllllllllllllllllllllll=ll

.I,_) Example

==-—' mnd I

—
=
=
—
=
=
=
=
=
—
=
=
=
=
=
=
=
|
L
O

II.__.
Exampl.
e
1

-
El—'

—
=
=
—
=
=
=
=
=
—
=
=
=
=
=
=
=
|
L
O

II.__.
Exampl.
e
1

-
El—'

—
=
=
—
=
=
=
=
=
—
=
=
=
=
=
=
=
|
L
O

II.__.
Exampl.
e
1

-
El—'

.I,_) Example

i
.I
.P Dist: O Dist: 1 Dist: 2

ENNEE .
.-

mnd I

D e e A s B O
=I._, Key Property of Shortest Paths -

(W <>

e Suppose you have shortest path from u to v.

< =8

B ————T
e

==llllllllllllllllllllllll=ll

—
0
.I._, Key Property of Shortest Paths

e Suppose you have shortest path from u to v.

e Suppose it goes through the edge (x, v).
o xisonly 1 edge away from .

o
< =8

B ————T
e

==llllllllllllllllllllllll=ll

—
0
.I._, Key Property of Shortest Paths

e Suppose you have shortest path from u to v.

e Suppose it goes through the edge (x, v).
o xisonly 1 edge away from .

.P e Then the part of that path from u to x is a shortest path.

< =8

B ————T
e

Key Property, Restated mic

e A shortest path of length k is composed of:
o A shortest path of length k - 1
o Plus one edge

11113999

T ————
.............................

B .
| 4 B
-’ -
B B
L Question B
B ' B
= Node v has three neighbors: a, b, and c. The distance from: =
. e utoaiss. .
. e utobis 3. A .
. e utocis7?. B .
B < B
€ » Wwhatis the distance from u to v? D B
. E: Not enough info =

T T ———————
..............................

N A A
——— =aEE
.

Node v has three neighbors: a, b, and c. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?

(<
T ———— T ————
.............................

"l'f'!.'f"f'!"!."!'

N A A
——— =aEE
.

Node v has three neighbors: a, b, and c¢. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?

'C'L'T"C'!"C'!'

-~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
-~
~
~
~
~
~
~
~
~
~
~
~
~
~ -
~

T ————
e

N A A
——— =aEE
.

Node v has three neighbors: a, b, and c¢. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?

—_——
—_
—_
—_
—_
—
—
—
—_
—_
—_
_—

'C'L'T"C'!"C'!'

T ————
e

N A A
——— =aEE
.

Node v has three neighbors: a, b, and c¢. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?

—_——
—_
—_
—_
—_
—
—
—
—_
—_
—_
_—

'C'L'T"C'!"C'!'

T ————
e

N A A
——— =aEE
.

Node v has three neighbors: a, b, and c¢. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?

—_——
—_
—_
—_
—_
—
—
—
—_
—_
—_
_—

'C'L'T"C'!"C'!'

T ————
e

Algorithm Idea

e Find all nodes distance 7 from source.

e Use these to find all nodes distance 2 from source.

e Use these to find all nodes distance 3 from source.

11113999

T ————
.............................

=l

..this is exactly what BFS does.
-ttt

It turns out...

93392290

EE—-—-—-—-—-—-—-—-—-—--dIII

93322290

BFS for Shortest Paths
T T 1T Tt Tt rrr T TP T TP i rrr i1

==llllllllllllllllllllllll=ll

=I-—' Key Property of BFS
=

For any k = 1 you choose: #take k = 10

All nodes distance k - 1 (9) from source are added to the
queue before any node of distance & (10).

Therefore, nodes are “processed” (popped from queue) in
order of distance from source.

T ————
e

I lllllllllllllllllllllll=ll

.I,_) Example

==-—' mnd I

.I,_) Example

Dist: o©

I lllllllllllllllllllllll=l=
.-

o
o =8

B ————T
e

.I,_) Example |

Dist: o° Dist: 1

I lllllllllllllllllllllll=l=
.-

o
o =8

B ————T
e

l lIIllllllllllllllllllll=l=
I;, Example (u0) .

Dist: o° Dist: 1

o
o =8

B ————T
e

l lIIIIIIIIIIIIIIIIIIIIII=I=
.I,_) Example [#£61, a(1), b(1)] .

Dist: o° Dist: 1

o
o =8

B ————T
e

I llIllllllllllllllllllll=l=
.I...- Example [#63}, atH, b(1), c(2), d(2)] -

Dist: o° Dist: 1 Dist: 2

o
o =8

B ————T
e

l lllllllllllllllllllllll=l=
.I...- Example [#6},), b8, c(2), d(2)] -

Dist: o° Dist: 1 Dist: 2

o
o =8

B ————T
e

I lllllllllllllllllllllll=ll

L
.I,_,o Example [=6}, ath, bth, €2}, d(2) | -

Dist: o° Dist: 1 Dist: 2

o
o =8

B ————T
e

I lllllllllllllllllllllll=ll

-
.I,_,o Example [#£67, ath, &th, e, et e(3) | -

Dist: o° Dist: 1 Dist: 2

o
o =8

B ————T
e

I lllllllllllllllllllllll=ll

L
.I,_,- Example [#0), st¥), b, €02}, 662}, e3) | -

Dist: o° Dist: 1 Dist: 2

o
o =8

B ————T
e

Discovering Shortest Paths

e \We “discover” shortest paths when we pop a node from
queue and look at its neighbors.

e But the neighbor’s status matters!

11113999

T ————
.............................

Consider This

e \We pop a node s.

e It has a neighbor v whose status is undiscovered.

e \We've discovered a shortest path to v through s!

11113999

T ————
.............................

Consider This

e We pop a nodess.

e |t has a neighbor v whose status is pencing or visited.

e \We already have a shortest path to v.

11113999

T ————
.............................

==llllllllllllllllllllllll=ll

— -
=I-’ Modifying BFS 1

o Use BFS “framework”.

e Return dictionary of search predecessors.

o |If vis discovered while visiting u, we say that u is the BFS
predecessor of v.
o This encodes the shortest paths

.P e Also return dictionary of shortest path distances.

< =8

B ————T
e

def bfs shortest path(graph source)
Start a BFS at “source ."""
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:
u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’
distance[v] = distance[u] + 1
predecessor[v] = u

'!."C"C'!"L"!'

C

pending.append(Vv)
status[u] == 'visited'
return predecessor, distance

c

T ————
.............................

def bfs shortest path(graph source)
Start a BFS at “source ."""
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’
distance[v] = distance[u] + 1

predecessor[v] = u

'!."C"C'!"L"!'

C

pending.append(Vv)
status[u] == 'visited'
return predecessor, distance

c

T ————
.............................

def bfs shortest path(graph source)
Start a BFS at “source ."""
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’
distance[v] = distance[u] + 1

predecessor[v] = u

'!."C"C'!"L"!'

C

pending.append(Vv)
status[u] == 'visited' 9
return predecessor, distance

c

T ————
.............................

def bfs shortest path(graph source)
Start a BFS at “source ."""
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’
distance[v] = distance[u] + 1 10

predecessor[v] = u

'!."C"C'!"L"!'

C

pending.append(Vv) 9
status[u] == 'visited'
return predecessor, distance

c

T ————
.............................

Lote |

EE—-—-—-—-—-—-—-—-—-—--dIII

!!lllllllllllllllllllll=ll

distance = {

Dist: ©°

'l' '!.'f"f'!"!."!'

= T —— T ———

!!lllllllllllllllllllll=ll

distance = { predec = {

Dist: ©°

'l' '!.'f"f'!"!."!'

= T —— T ———

!!lllllllllllllllllllll=ll

distance = { predec = {

Dist: ©°

'l' '!.'f"f'!"!."!'

= T —— T ———

!!lllllllllllllllllllll=ll

distance = {'u’: O predec = {

Dist: ©°

[U]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'U’: O predec = {

Dist: ©°

[U]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'u’: 0, 'a": 1 predec = {

Dist: o Dist: 1

[U]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = { 'u’: O, 'a’": 1 predec = {'a": ‘U’

Dist: o Dist: 1

[U]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = { 'u’: O, 'a’": 1 predec = {'a": ‘U’

Dist: o Dist: 1

[u, al

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'u’: 0, 'a’: 1, 'b": 1 predec = {'a": ‘U’

Dist: o Dist: 1

[u, al

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a": 1, 'b": 1 predec = {'a": 'u’, 'b": ‘U’ .

Dist: o Dist: 1

[u, al

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a": 1, 'b": 1 predec = {'a": 'u’, 'b": ‘U’ .

Dist: o Dist: 1

[u, a3, b]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a": 1, 'b": 1 predec = {'a": 'u’, 'b": ‘U’ .

Dist: o Dist: 1

[3, D]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a": 1, 'b": 1 predec = {'a": 'u’, 'b": ‘U’ .

Dist: o Dist: 1

[3, D]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a": 1, 'b": 1, 'c’:2 predec = {'a": 'u’, 'b": ‘U’ .

Dist: o Dist: 1 Dist: 2

[3, D]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a": 1, 'b": 1, 'c’:2 predec = {'a": 'u’, 'b": 'U’, .
\Cl: \al,

Dist: o Dist: 1 Dist: 2

[3, D]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a": 1, 'b": 1, 'c’:2 predec = {'a": 'u’, 'b": 'U’, .
\Cl: \al,

Dist: o Dist: 1 Dist: 2

[3, b, C]

= T —— T ———

'l' '!.'f"f'!"!."!'

!!lllllllllllllllllllll=ll

distance = {'v’: 0, 'a’: 1, 'b’: 1, 'c":2,'d": 2 predec = {'a": 'u’, 'b": 'U’, .
\Cl: \al,

Dist: o Dist: 1 Dist: 2

[3, b, C]

= T —— T ———

'l' '!.'f"f'!"!."!'

_JI
I
Al

distance = {'v’: 0, 'a’: 1, 'b’: 1, 'c":2,'d": 2 predec = {a , b
'C 'd":

Dist: o Dist: 1 Dist: 2

[3, b, C]

= T —— T ———

'l' 9999499

_JI
I
Al

distance = {'v’: 0, 'a’: 1, 'b’: 1, 'c":2,'d": 2 predec = {a , b
'C 'd":

Dist: o Dist: 1 Dist: 2

[3,b,C,d]

= T —— T ———

'l' 9999499

_JI
I
Al

distance = {'v’: 0, 'a’: 1, 'b’: 1, 'c":2,'d": 2 predec = {a , b
'C 'd":

Dist: o Dist: 1 Dist: 2

[b, c, d]

= T —— T ———

'l' 9999499

_JI
I
Al

distance = {'v’: 0, 'a’: 1, 'b’: 1, 'c":2,'d": 2 predec = {a , b
'C 'd":

Dist: o Dist: 1 Dist: 2

[C, d]

= T —— T ———

T.' 9999499

_JI
I
Al

distance = {'v’: 0, 'a’: 1, 'b’: 1, 'c":2,'d": 2 predec = {a , b
'C 'd":

Dist: o Dist: 1 Dist: 2

[d]

= T —— T ———

'l' 9999499

_JI
I
Al

distance = {'v’: 0, 'a’: 1, 'b’: 1, 'c":2,'d": 2 predec = {a , b
'C 'd":

Dist: o Dist: 1 Dist: 2

[d]

= T —— T ———

T.' 9999499

distance = {'U’: 0,'a: 1,'b": 1,'c":2,'d": 2, 'e’: 3} predec = {8

_JI
I
Al

NSNS EE.

T I
, 'b":
'd’:

Dist: 1 Dist: 2

[d]

= T —— T ———

T.' TCeece

distance = {'U’: 0,'a: 1,'b": 1,'c":2,'d": 2, 'e’: 3} predec = {8

_JI
I
Al

NSNS EE.

T I
, 'b":
'd’:

d }
Dist: 1 Dist: 2

[d]

= T —— T ———

T.' TCeece

distance = {'U’: 0,'a: 1,'b": 1,'c":2,'d": 2, 'e’: 3} predec = {8

_JI
I
Al

NSNS EE.

T I
, 'b":
'd’:

d }
Dist: 1 Dist: 2

[d, e]

= T —— T ———

T.' TCeece

distance = {'U’: 0,'a: 1,'b": 1,'c":2,'d": 2, 'e’: 3} predec = {8

_JI
I
Al

NSNS EE.

T I
, 'b":
'd’:

d }
Dist: 1 Dist: 2

[€]

= T —— T ———

'l' TCeece

distance = {'u’: O, ‘a’: 1, 'b": 1, 'c’:2, 'd": 2, ‘e’: 3} predec = {a

_JI
I
Al

NSNS EE.

T I
, 'b":
'd’:

d }
Dist: 1 Dist: 2

T.' TCeece

= T —— T ———

..............................
=i-'| distance = {'u’: 0,'a’: 1,'b’: 1, 'c’:2,'d": 2, 'e’: 3, predec = {\a, u ‘ '1 ‘ .==
o - v 5

=t Dist: o Dist: 1 Dist: 2 ‘ ;: _.=
- o :
Ht -
o .
o -
- .
¥ -
= L

e ==l

BFS Trees

T ———
..............................

Result of BFS

e Each node reachable from source has a single BFS
predecessor.
o Except for the source itself.

e The resultis a tree (or forest).

11113999

T ————
.............................

Trees

e A (free) tree is an undirected graph T = (V, E) such that T
is connected and |E| = |V | - 1.

e A forest is graph in which each connected component is
a tree.

11113999

T ————
.............................

BFS Trees (Forests)

e |If the input is connected, BFS produces a tree.

e |f the input is not connected, BFS produces a forest.

11113999

T ————
.............................

I lllllllllllllllllllllll=ll

0
.I_’ Example How many nodes? -

How many edges?

C

==-—' mnd I

ﬁj
7

T R ————
-ttt

93333390

BFS trees and forests encode shortest path

distances.

BFS Trees

Thank you!

.I CampusWire!
=l--

)

