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e The length of a pathis (# of nodes) - 1
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Definitions

e A shortest path between u and v is a path between u and v
with smallest possible length.
o There may be several, or none at all.

e The shortest path distance is the length of a shortest path.
o Convention: < if no path exists.
o “the distance between u and v* means spd.
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Today: Shortest Paths

e Given: directed/undirected graph G, source u

e Goal: find shortest path from u to every other node.
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=I._, Key Property of Shortest Paths -
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e Suppose you have shortest path from u to v.
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.I._, Key Property of Shortest Paths

e Suppose you have shortest path from u to v.

e Suppose it goes through the edge (x, v).
o xisonly 1 edge away from .

o
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.I._, Key Property of Shortest Paths

e Suppose you have shortest path from u to v.

e Suppose it goes through the edge (x, v).
o xisonly 1 edge away from .

.P e Then the part of that path from u to x is a shortest path.
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Key Property, Restated mic

e A shortest path of length k is composed of:
o A shortest path of length k - 1
o Plus one edge
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Node v has three neighbors: a, b, and c. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?
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Node v has three neighbors: a, b, and c¢. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?
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‘e utobis 3.
e utocis.

What is the distance from u to v?

—_——
—_
—_
—_
—_
—
—
—
—_
—_
—_
_—

'C'L'T"C'!"C'!'

T ————
e



N A A
——— =aEE
.

Node v has three neighbors: a, b, and c¢. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?

—_——
—_
—_
—_
—_
—
—
—
—_
—_
—_
_—

'C'L'T"C'!"C'!'

T ————
e



N A A
——— =aEE
.

Node v has three neighbors: a, b, and c¢. The distance from:

utoalisb.
‘e utobis 3.
e utocis.

What is the distance from u to v?

—_——
—_
—_
—_
—_
—
—
—
—_
—_
—_
_—

'C'L'T"C'!"C'!'

T ————
e



Algorithm Idea

e Find all nodes distance 7 from source.

e Use these to find all nodes distance 2 from source.

e Use these to find all nodes distance 3 from source.
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..this is exactly what BFS does.
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It turns out...
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BFS for Shortest Paths
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=I-—' Key Property of BFS
=

For any k = 1 you choose: #take k = 10

All nodes distance k - 1 (9) from source are added to the
queue before any node of distance & (10).

Therefore, nodes are “processed” (popped from queue) in
order of distance from source.
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Discovering Shortest Paths

e \We “discover” shortest paths when we pop a node from
queue and look at its neighbors.

e But the neighbor’s status matters!
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Consider This

e \We pop a node s.

e It has a neighbor v whose status is undiscovered.

e \We've discovered a shortest path to v through s!
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Consider This

e We pop a nodess.

e |t has a neighbor v whose status is pencing or visited.

e \We already have a shortest path to v.
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o Use BFS “framework”.

e Return dictionary of search predecessors.

o |If vis discovered while visiting u, we say that u is the BFS
predecessor of v.
o This encodes the shortest paths

.P e Also return dictionary of shortest path distances.
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def bfs shortest path(graph source)
Start a BFS at “source ."""
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'
distance[source] = 0
pending = deque([source])

# while there are still pending nodes
while pending:
u = pending.popleft() #remove the first elem
for v in graph.neighbors(u):
if status[v] == 'undiscovered':
status[v] = 'pending’
distance[v] = distance[u] + 1
predecessor[v] = u

'!."C"C'!"L"!'

C

pending.append(Vv)
status[u] == 'visited'
return predecessor, distance
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def bfs shortest path(graph source)
Start a BFS at “source ."""
status = {node: 'undiscovered' for node in graph.nodes}
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Result of BFS

e Each node reachable from source has a single BFS
predecessor.
o Except for the source itself.

e The resultis a tree (or forest).
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Trees

e A (free) tree is an undirected graph T = (V, E) such that T
is connected and |E| = |V | - 1.

e A forest is graph in which each connected component is
a tree.
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BFS Trees (Forests)

e |If the input is connected, BFS produces a tree.

e |f the input is not connected, BFS produces a forest.
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BFS trees and forests encode shortest path

distances.

BFS Trees
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